data pipeline

Why Fivetran beats iPaaS for faster, simpler data integration
Replace fragile point-to-point workflows from MuleSoft, Boomi, Workato, and Zapier with reliable, scalable data integration.

Benchmarked: A data pipeline latency analysis
Learn how Fivetran measures the latency of our pipelines.

How Tinuiti meets the data demands of digital marketing
Learn how the largest US independent performance marketing company manages nearly $3 billion in media spend for its clients.

Wie Sie eine Datengrundlage für generative KI schaffen
Generative KI basiert auf Datenreife, bei der ein Unternehmen sowohl die Fähigkeit zur Datenintegration – also zur Bewegung und Transformation der Daten – als auch zur Kontrolle der Verwendung der Daten besitzt.

Five key attributes of a highly efficient data pipeline
Not all ELT solutions are created equal. Here are the capabilities your tool needs to efficiently move data.

How HubSpot’s analytics engineering team gained pipeline autonomy
Learn how Oviya Arasu and her team at HubSpot use Fivetran data models and Transformations for dbt Core™ to automate their pipelines and decrease engineering bottlenecks

Cost-effective ELT: Four factors to consider
From DIY opportunity cost and pipeline maintenance to moving and transforming data, here’s how to judge the cost-effectiveness of ELT.

Why context is key to building reliable data pipelines
The data catalog is a critical step in the movement toward becoming a data-driven business. Here are 4 table-stakes questions to ask yourself to deliver reliable, trusted data.

Active metadata: Open the black box of your data pipelines
Data integration pipelines supply valuable data from producers to consumers, but even the best pipelines can break. Now what?

10 data pipeline challenges your engineers will have to solve
When choosing to build or buy, consider whether the following challenges are worth the squeeze.
Kostenlos starten
Schließen auch Sie sich den Tausenden von Unternehmen an, die ihre Daten mithilfe von Fivetran zentralisieren und transformieren.